Kneumatik

Servo Motion Profile Calculator

Calculate motor requirements, optimize system parameters, and verify performance for servo-driven motion systems.

Calculator

Usage Guidelines

Motor Selection

  1. Enter motion requirements (distance, cycle time)
  2. Input load characteristics
  3. Set initial gear ratio
  4. Review required motor specifications
  5. Verify thermal requirements (RMS torque)

Payload Capacity

  1. Enter motor specifications
  2. Input motion requirements
  3. Set mechanical parameters
  4. Calculate maximum allowable payload
  5. Verify inertia ratio

Gear Ratio Optimization

  1. Enter system parameters
  2. Run optimization
  3. Review resulting inertia ratio
  4. Verify torque and speed requirements
  5. Select nearest standard ratio

Overview

This calculator helps you design and validate servo motion systems by:

Motion Profile

The calculator uses a triangular velocity profile which provides:

The profile consists of:

  1. Acceleration phase (0 to peak velocity)
  2. Deceleration phase (peak velocity to 0)
  3. Dwell time (stationary period)
\[v(t) = \begin{cases} a_{max}t & 0 \leq t \leq \frac{t_m}{2} \\ a_{max}(t_m - t) & \frac{t_m}{2} < t \leq t_m \\ 0 & t_m < t \leq t_c \end{cases}\]

Where:

Key Calculations

Inertia Ratio

The inertia ratio ($\lambda$) is a critical parameter for servo system performance:

\[\lambda = \frac{J_L}{J_M \cdot i^2}\]

Where:

Recommended range: $\lambda \leq 10:1$

Required Torque

Peak torque requirement includes inertial and dynamic loads:

\[T_{req} = \frac{(J_M + J_{L,reflected}) \cdot \alpha \cdot i}{\eta}\]

Where:

RMS Torque

For thermal calculations:

\[T_{RMS} = \sqrt{\frac{1}{t_c}\int_0^{t_c} T(t)^2 dt}\]

For triangular profile:

\[T_{RMS} = T_{peak} \sqrt{\frac{t_m}{3t_c}}\]

Important Notes

References

  1. Servo Motor Sizing Fundamentals (Kollmorgen)
  2. Motion Control Design Guide (Yaskawa)
  3. Inertia Matching for Servo Applications (ASME)